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OVERVIEW
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Project Start: October 2017

Project End: September 2020

15% complete

 Complexity of urban scale 
networks are too large to model 
in reasonable compute time

 Ingestion and understanding of 
real-world data in near real-time

 Optimization of energy 
productivity and mobility across 
complex networks

Total project funding:

$6M / 3 years

$2M per year / 4 National Labs

Timeline

Budget

Barriers

PNNL, ANL, ORNL

Connected Corridor, UCB, 
CalTrans

Partners



RELEVANCE
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 Overall Objective: Support the EEMS program mission to create new knowledge, 

tools, insights, and technology solutions that increase mobility energy productivity 

for individuals and businesses by:

– Developing the High Performance Computing tools to rapidly model large 

scale transportation networks using real-world, near real-time data.  

– Integrating energy, productivity and mobility measures to determine 

optimization opportunities.

 Objectives this period:

• Identify appropriate modeling tools (e.g. deep learning) and platforms.

• Demonstrate HPC transportation model for capturing urban scale traffic 

dynamics.

• Estimate the energy cost and productivity loss of congestion.

• Analyze real-world sensor data to estimate network demand.

 Impact:

• Develop new control ideas for optimizing energy, productivity and mobility for 

normal traffic conditions and network stress conditions



WORK BREAKDOWN
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MILESTONES
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WBS Task Primary RI Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
0 Project Coordination Berkeley

1 Define appropriate Role of HPC, ML, and big data analytics for transportation Berkeley

M1.3.1 Complete deployment of initial HPC and HPC-ML toolset as appropriate PNNL X

2 Automated Transportation Data: Veracity, Velocity, and Geospatial-Temporal

M2.1.2 Establish organizationally efficient data access process Berkeley X
M2.2.2 Select initial HPC-ML tools PNNL X

M2.3.1 Select initial training dataset from Connected Corridor ANL X

M2.3.2 Demonstrate viability of LSTM neural architecture for G-T data ANL Go/NG

M2.5.2 Define path for integration of energy models into HPC framework ORNL X

M2.5.3 Evaluate efficacy of ML approach and impact of data veracity on energy estimates ORNL Go/NG
3 Develop asynchronous distributed state HPC transportation network models Berkeley

M3.2.2 Demonstrate asynchronous distributed state model on large scale network Berkeley Go/NG

M3.3.2 Develop data transfer approach to integrate optimization models X

M3.3.3 Demonstrate HPC dynamic traffic assignment (DTA) modeling X

4 Couple automated data ingestion, learning systems and large scale modeling
M4.1.1 Preliminary dataflow diagram X

4.2.1 MaTEx deployed at all labs All X Complete

Satisfied

On Track

On Track

On Track

On Track

Complete

Complete

On Track

FY18 FY19 Status

Complete

Complete
On Track



APPROACH : Mobility Modeling & Optimization
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Develop high-speed HPC enabled 

tools that will create actionable 

control predictions at the network 

level



APPROACH : Tool Layer
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ACCOMPLISHMENTS: 

Promising Spatial & Temporal Techniques 
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A multi-layered approach incorporating both temporal and spatial learning 

Figure adapted from: Graph Convolutional 

Networks, https://tkipf.github.io/graph-

convolutional-networks

X(t)X(t-1)X(t-y)X(t-x) …

GCNGCNGCNGCN …

Graph Convolutional Network
Geospatial, structured data

LSTMLSTMLSTMLSTM … LSTMLSTM

H(t1) H(t3)H(t2)

Y(t+a) Y(t+c)Y(t+b)
Temporal Layer

Spatial Layer

Predictions



ACCOMPLISHMENTS:

Hyper-parameter Search for LSTM
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LSTM Traffic POC on Theta at Argonne’s ALCF

• LSTM hyper-parameter tuning POC running at increased scale

• 256 nodes; each node evaluates a deep neural network

Example Surrogate Model Fitted to Sampled 

Performance

(iterative refinement improves the learning model)



ACCOMPLISHMENTS: Single Station LSTM Based 

Speed & Flow Estimation POC
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Next Step : Scaling in time and space



ACCOMPLISHMENTS: 

Actor-Based Traffic Model Representation
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• Actor-based model:  links are actors, vehicles are propagated through the system 

via events passed between actors

• Event signals the arrival of a vehicle at a link at some time T0

• Link actor mediates the congestion experienced by each vehicle traversing the link

• Link computes vehicle traversal time and schedules an event for the vehicle’s 

arrival at the next link actor in the vehicle’s path at time T1

Receive Event: T0Send Event: T1 = T0 + Sa(va)

freehandz / 123RF Stock Photo

Link Actor



ACCOMPLISHMENTS:

Optimistic Parallel Discrete Event Simulation

• Simulation is parallelized by splitting links across multiple computer 

nodes/processes/threads to logical processors (LPs)

• Vehicles traverse between LPs and must be communicated across the network
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Intelligent Geospatial Partitioning of 

the Network Graph

Conservative PDES:

Requires every rank 

to be synchronized to 

a global time step

Optimistic PDES:  

Allows ranks to execute 

without synchronization and 

enforces causality by rolling 

back mis-speculatively 

executed events

Reduce communications 

and rollback by multi-

objective partitioning of link 

actors based on event load



ACCOMPLISHMENTS: Urban Scale Flow Modeling



APPROACH: Four Part Vehicle Energy Model

2012 Ford Focus

2012 Nissan Altima

2012 Ford F-150

𝑐 = 𝑓(𝐹𝑡 𝑣 , 𝑣)

Dynamometer 

Test Data 

(ANL)

Data fitting 

and tuning

2D Lookup 

Table

Timestamp 

[sec]

Dyno Speed 

[mph]

Dyno Tractive 

Effort [N]

Fuel flow 

[cc/s]

38.1 10.486429 112.832683 0.37709

38.2 10.488464 132.010357 0.392381

38.3 10.487446 135.984109 0.420566

… … … …

Objective: Estimate/predict fuel (energy) consumption for 

each vehicle on each path segment.

• Determine resistant force 𝐹𝑟 𝑣 ,

• Determine the vehicle traction force, 𝐹𝑡 𝑣

• Determine fuel rate characteristic map, 

𝑐 𝑣 = 𝑓(𝐹𝑡 𝑣 , 𝑣), using ANL datasets

• Compute fuel consumption rate for each vehicle 

based on the velocity in Mobiliti



ACCOMPLISHMENT: Four Part Vehicle Energy Model

Compute fuel consumption rate 

for each agent:

For the trip 𝑛, the total fuel 

consumption 𝑒𝑛 =

 𝑖∈𝑃𝑎𝑡ℎ 𝑓 𝐹𝑡 𝑣𝑛
𝑖 , 𝑣𝑛

𝑖 ⋅
𝑑𝑖

𝑣𝑛
𝑖

For the road link 𝑖, the 

accumulated fuel consumption 

𝐸𝑖 =  𝑛∈𝑁𝑖 𝑓 𝐹𝑡 𝑣𝑛
𝑖 , 𝑣𝑛

𝑖 ⋅
𝑑𝑖

𝑣𝑛
𝑖

where 𝑑𝑖 is the length of road link 

𝑖, 𝑣𝑛
𝑖 is the velocity of trip 𝑛

through link 𝑖, 𝑁𝑖 denotes all the 

trips through link 𝑖.

Vehicle 

Model % of Fleet

Replication 

Factor
2012 Focus 10%

82012 Altima 10%

2012 F-150 5%



ACCOMPLISHMENTS: Urban Scale Productivity Impact

• Time-varying loss of productivity across top links

• Up to $2000 loss per 15 mins on the top congested links

• Total daily loss is more than $6 million



ACCOMPLISHMENTS: Deployed HPC Enabled Machine 

Learning Platform (MaTEx)
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• MaTEx is a collection of parallel machine learning and data mining (MLDM) 

algorithms for desktops, supercomputers and cloud computing systems.

• MaTEx also supports
• K-means

• Spectral Clustering algorithms for clustering

• Support Vector Machines

• KNN algorithms for classification

• FP-Growth for Association Rule Mining.

• MaTEx provides high performance 

implementations of DL algorithms

• Google TensorFlow as the baseline

• MPI for inter-node communication

• multi-threading/CUDA (cuDNN) for intra-node 

execution



COLLABORATION AND COORDINATION
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Connected Corridor, University of California Berkeley

CalTrans, LA Metro, LA DOT

GPS Data for Connected Corridor Region

National Laboratories : HPC Modeling

Government and Academia : Infrastructure Data

Industry : Mobility Data

TAZ Movement Data / Validation



REMAINING CHALLENGES AND BARRIERS

 Acquisition of urban scale mobility data

 Development of learning models for sparse and low 

quality data sets

 Data fusion mechanisms for creating improved demand 

models from real-world data

 Extension of small scale models to full urban scale 

models 

 Development of learning models for large scale networks
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FUTURE RESEARCH

 Characterizing real-world mobility demand using automated, data-fusion  ML 

models 

 Use of simulator to create emergent behaviors: 

 Extend models and simulator to investigate impact of more intelligent 

transportation system agents – dynamic routing.

 Investigate impact of induced agent rerouting as a result of a network 

change

 Impact of routing and control algorithms on energy, productivity and mobility 

measures with more sophisticated network representation, eg. improved 

map information

 Improved performance of the simulator to generate data sets for machine 

learning algorithms for the purpose of creating  large scale network 

characterizations 

 Investigate the use of resultant models in real-time decision making

20

Any proposed future work is subject to change based on funding levels



SUMMARY

 Urban-scale model for investigating 

impact of mobility dynamics running on 

HPC

 Capable of running large network 

and demand (2M links, 7M agents) 

in minutes

 Energy model under development

 Economic cost model in place

 Machine Learning approach to 

estimating speed and flow from real-

world data  - allows for understanding 

and modeling true dynamics

 HPC enabled tool chain in place to 

create integrated problem solutions

21
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APPROACH: Functional Layer with Analytics
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